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CMSC201
Computer Science I for Majors

Lecture 22 – Data Representation
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Last Class We Covered

• Sorting

– Bubble

– Selection

– Quick

• Searching

– Linear

– Binary

2
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Any Questions from Last Time?
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Today’s Objectives

• To understand how data is represented 
and stored in memory

–Binary numbers

–Hexadecimal numbers

– Converting

• Binary to Decimal

• Decimal to Binary

– ASCII

4
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Binary Numbers
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Binary Numbers

• Computers store all information (code, text, 
images, sound,) as a binary representation

– “Binary” means only two parts: 0 and 1

• Specific formats for each file help the 
computer know what type of item/object it is

• But why use binary? 

6
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Decimal vs Binary

• Why do we use decimal numbers?

– Ones, tens, hundreds, thousands, etc. 

• But computers don’t have fingers…

– What do they have instead?

• They only have two states: “on” and “off”

7



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Decimal Example

• How do we represent a number like 50,932?

8

5

104

0

103

9

102

3

101

2

100

Decimal uses 10 digits, so…

2 x 100 =     2

3 x 101 =    30

9 x 102 =   900

0 x 103 =  0000

5 x 104 = 50000

------

Total:   50932
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Another Decimal Example

9

6 7 4 9 3

104 103 102 101 100

10000 1000 100 10 1

60000 7000 400 90 3

60000+7000+400+90+3 = 67493
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Binary Example

• Let’s do the same with 10110 in binary

10

1

24

0

23

1

22

1

21

0

20

Binary uses 2 digits, so our base isn’t 10, but…

0 x 20 =  0

1 x 21 =  2

1 x 22 =  4

0 x 23 =  0

1 x 24 = 16

--

Total: 22
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Binary to Decimal Conversion

11

• Step 1: Draw Conversion Box
• Step 2: Enter Binary Number
• Step 3: Multiply
• Step 4: Add 

29 28 27 26 25 24 23 22 21 20

512 256 128 64 32 16 8 4 2 1

1 0 1 0 0 0 1 1 0 1

512 0 128 0 0 0 8 4 0 1

128 + 0 + 0 + 0 + 8 + 4 + 0 + 1 = 141
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Exercise: Converting From Binary

12

• What are the decimals equivalents of…

101       

1111      

100000    

101010    

0010 1010 

1000 0000

Longer binary numbers are 
often broken into blocks of 
four digits for the sake of 

readability
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Exercise: Converting From Binary

13

• What are the decimals equivalents of…

101       = 4+0+1        = 5

1111      = 8+4+2+1      = 15

100000    = 32+0+0+0+0+0 = 32

101010    = 32+0+8+0+2+0 = 42

0010 1010 = 32+0+8+0+2+0 = 42

1000 0000 = 128+...+0+0 = 128
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Decimal to Binary Conversion

14

• Step 1: Draw Conversion Box
• Step 2: Compare decimal to highest  binary value
• Step 3: If binary value is smaller, put a 1 there and 

subtract the value from the decimal number
• Step 4: Repeat until 0

29 28 27 26 25 24 23 22 21 20

512 256 128 64 32 16 8 4 2 1

Convert 163 to binary

163-128 = 35 35-32 = 3 3-2=1 1-1=0

1 0 1 11 0 0 0



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Converting to Binary

• What are the binary equivalents of…

9

27

68

216

255

15
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Converting to Binary

• What are the binary equivalents of…

9    = 1001 (or 8+1)

27   = 0001 1011 (or 16+8+2+1)

68   = 0100 0100 (or 64+4)

216  = 1101 1000 

(or 128+64+16+8)

255  = 1111 1111

(or 128+64+32+16+8+4+2+1)

16
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Binary Tips and Tricks

• Some “sanity checking” rules for conversions:

1. Binary can only be 1 or 0

– If you get “2” of something, it’s wrong

2. Odd numbers must have a 1 in the ones column

– Why?  (And what’s the rule for even numbers?)

3. Each column’s value is the sum of all of the 
previous columns (to the right) plus one

– In decimal, what column comes after 999?

17
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Hexadecimal Numbers
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Decimal Representation

• Decimal uses 10 digits

– Decimal, deci = 10

– The digits used are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

19

5

104

4

103

2

102

1

101

0

100

7

105

8

106

9

107
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Binary Representation

• Binary uses 2 digits

– Binary, bi = 2

– The digits used are 0 and 1

20

1

24

1

23

1

22

1

21

0

20

0

25

0

26

1

27
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Hexadecimal Representation

• Hexadecimal (or just “hex”) uses 16 digits 

– Hexadecimal, hex = 6 plus deci = 10  16

– The digits used are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

• And letters A (10), B (11), C (12), D (13), E (14), and F (15)

21

8

164

6

163

3

162

1

161

0

160

A

165

D

166

F

167



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Hexadecimal Representation

• Hexadecimal (or just “hex”) uses 16 digits 

– Hexadecimal, hex = 6 plus deci = 10  16

– The digits used are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

• And letters A (10), B (11), C (12), D (13), E (14), and F (15)

22

8

164

6

163

3

162

1

161

0

160

A

165

D

166

F

167
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Hex to Binary Conversion

• A hexadecimal digit can be easily represented 
as four digits of binary (with leading zeros)

• This makes conversion very simple

– 7A0F becomes 0111 1010 0000 1111

– 1100 0010 0110 1001 becomes C269
23

Hex Binary Hex Binary Hex Binary Hex Binary

0 0000 4 0100 8 1000 C 1100

1 0001 5 0101 9 1001 D 1101

2 0010 6 0110 A 1010 E 1110

3 0011 7 0111 B 1011 F 1111
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Hex to Decimal Conversion

• Possible to convert between decimal and hex

– But it requires calculating out multiples of 16

• Simpler to make a “side trip” to binary as 
an in-between step when converting

– 240 becomes 1111 0000 becomes F0

• F0 is equal to (15 * 161) + (0 * 160) = 240 + 0 = 240

– 7D becomes 0111 1101 becomes 125

• 7D is equal to (7 * 161) + (13 * 160) = 112 + 13 = 125

24
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Number System Notation

• Because number systems share a subset of the 
same digits, it may be confusing which is which

– For example, what is the value of 10?

• In decimal it’s 10, in binary it’s 2, and in hex it’s 16

• To prevent this, numbers may often be prefixed 
with 0b, 0d, or 0x (binary, decimal, hex):

– 0b1100 is binary, and has a value of 12

– 0x15 is hexadecimal, and has a value of 21

25
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ASCII Values
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ASCII Values

• ASCII is how text is represented in computers

– Just like binary is how numbers are represented

• In ASCII, every character has a unique,  
individual numerical code

– Lowercase and uppercase characters are separate

– Codes go from 0 to 127

• Why 127?

27
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“control” 
characters

symbols & 
numbers

uppercase 
letters

lowercase 
letters
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Comparing Strings

• The values of the ASCII characters are used 
when comparing strings together

– Which can lead to some “weird” results
>>> "cat" < "dog"

True

>>> "cat" < "Dog"

False

>>> "DOG" < "dog"

True

30

<?
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More on Comparing Strings

• Gets even more complex when you start 
adding in numbers and symbols
>>> "2" < "one"

True

>>> "good?" < "good!"

False

>>> "UK" < "U.K."

False

31
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Rules for Comparisons

• To avoid (some) of these issues:

• Always use .lower() for comparing strings

• Pay attention to symbols

– e.g., spaces, hyphens, punctuation, etc.

– Either remove them, or keep 
them in mind as part of the order

32
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ASCII Characters to ASCII Values

• We can convert between ASCII characters and 
their values using ord() and chr()

• The ord() function takes in a single
character, and returns its ASCII value

• The chr() function takes in an integer, 
and returns its ASCII character

33
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Using chr() and ord()

>>> chr(65)

'A'

>>> chr(65+32)

'a'

>>> ord('?')

63

>>> ord("d")

100

>>> ord("e")

101

34
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Project 3
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Project 3 Tips

• Hopefully you have started by now!

– Work on it a little everyday

• You have been given some solved puzzles
– Which means you don’t need a working solve() to 

test the other parts of your project
• Just load in the solution from the file

• Solve the puzzle once, and store the solved puzzle to 
use it later in your code

– Don’t resolve it every time you need it

• Make your own puzzles to test!
36
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Project 3 and Deep Copy

• You will need to make a deep copy of the 
2D list used to hold your Sudoku board

– Simply using new = old[:] will not work

• We recommend making a function to do this

– Test that your function works before using it

• Do NOT use the built-in deepcopy() 

function, or you will lose major points!!!

37
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Do Not Cheat on Project 3

• Yes, this project has solutions on the internet

– Yes, we have copies of all of them

– Yes, we will go looking for new ones after it’s due

• Yes, you could pay someone else to do it

– Yes, we know of the sites where you can get this done

– Yes, we will spot “elegant” code that you didn’t write

• Yes, there are libraries to deep copy in python

– Yes, you will get points off for using them

– You should not be importing anything for this project

38



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Questions?

39
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Announcements

• Project 3

– Design is due Tuesday, December 4th

– Project is due Tuesday, December 11th

• Final exam is when? 

– Friday, December 14th from 6 to 8 PM

– Locations will be posted on the course website

– Common final

40


