
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 22 – Data Representation



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Last Class We Covered

• Sorting

– Bubble

– Selection

– Quick

• Searching

– Linear

– Binary

2



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted3

Any Questions from Last Time?



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Today’s Objectives

• To understand how data is represented 
and stored in memory

–Binary numbers

–Hexadecimal numbers

– Converting

• Binary to Decimal

• Decimal to Binary

– ASCII

4



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted5

Binary Numbers



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Binary Numbers

• Computers store all information (code, text, 
images, sound,) as a binary representation

– “Binary” means only two parts: 0 and 1

• Specific formats for each file help the 
computer know what type of item/object it is

• But why use binary? 

6



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Decimal vs Binary

• Why do we use decimal numbers?

– Ones, tens, hundreds, thousands, etc. 

• But computers don’t have fingers…

– What do they have instead?

• They only have two states: “on” and “off”

7



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Decimal Example

• How do we represent a number like 50,932?

8

5

104

0

103

9

102

3

101

2

100

Decimal uses 10 digits, so…

2 x 100 =     2

3 x 101 =    30

9 x 102 =   900

0 x 103 =  0000

5 x 104 = 50000

------

Total:   50932



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Another Decimal Example

9

6 7 4 9 3

104 103 102 101 100

10000 1000 100 10 1

60000 7000 400 90 3

60000+7000+400+90+3 = 67493



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Binary Example

• Let’s do the same with 10110 in binary

10

1

24

0

23

1

22

1

21

0

20

Binary uses 2 digits, so our base isn’t 10, but…

0 x 20 =  0

1 x 21 =  2

1 x 22 =  4

0 x 23 =  0

1 x 24 = 16

--

Total: 22



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Binary to Decimal Conversion

11

• Step 1: Draw Conversion Box
• Step 2: Enter Binary Number
• Step 3: Multiply
• Step 4: Add 

29 28 27 26 25 24 23 22 21 20

512 256 128 64 32 16 8 4 2 1

1 0 1 0 0 0 1 1 0 1

512 0 128 0 0 0 8 4 0 1

128 + 0 + 0 + 0 + 8 + 4 + 0 + 1 = 141



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Exercise: Converting From Binary

12

• What are the decimals equivalents of…

101       

1111      

100000    

101010    

0010 1010 

1000 0000

Longer binary numbers are 
often broken into blocks of 
four digits for the sake of 

readability



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Exercise: Converting From Binary

13

• What are the decimals equivalents of…

101       = 4+0+1        = 5

1111      = 8+4+2+1      = 15

100000    = 32+0+0+0+0+0 = 32

101010    = 32+0+8+0+2+0 = 42

0010 1010 = 32+0+8+0+2+0 = 42

1000 0000 = 128+...+0+0 = 128



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Decimal to Binary Conversion

14

• Step 1: Draw Conversion Box
• Step 2: Compare decimal to highest  binary value
• Step 3: If binary value is smaller, put a 1 there and 

subtract the value from the decimal number
• Step 4: Repeat until 0

29 28 27 26 25 24 23 22 21 20

512 256 128 64 32 16 8 4 2 1

Convert 163 to binary

163-128 = 35 35-32 = 3 3-2=1 1-1=0

1 0 1 11 0 0 0



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Converting to Binary

• What are the binary equivalents of…

9

27

68

216

255

15



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Converting to Binary

• What are the binary equivalents of…

9    = 1001 (or 8+1)

27   = 0001 1011 (or 16+8+2+1)

68   = 0100 0100 (or 64+4)

216  = 1101 1000 

(or 128+64+16+8)

255  = 1111 1111

(or 128+64+32+16+8+4+2+1)

16



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Binary Tips and Tricks

• Some “sanity checking” rules for conversions:

1. Binary can only be 1 or 0

– If you get “2” of something, it’s wrong

2. Odd numbers must have a 1 in the ones column

– Why?  (And what’s the rule for even numbers?)

3. Each column’s value is the sum of all of the 
previous columns (to the right) plus one

– In decimal, what column comes after 999?

17



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted18

Hexadecimal Numbers



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Decimal Representation

• Decimal uses 10 digits

– Decimal, deci = 10

– The digits used are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

19

5

104

4

103

2

102

1

101

0

100

7

105

8

106

9

107



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Binary Representation

• Binary uses 2 digits

– Binary, bi = 2

– The digits used are 0 and 1

20

1

24

1

23

1

22

1

21

0

20

0

25

0

26

1

27



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Hexadecimal Representation

• Hexadecimal (or just “hex”) uses 16 digits 

– Hexadecimal, hex = 6 plus deci = 10  16

– The digits used are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

• And letters A (10), B (11), C (12), D (13), E (14), and F (15)

21

8

164

6

163

3

162

1

161

0

160

A

165

D

166

F

167



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Hexadecimal Representation

• Hexadecimal (or just “hex”) uses 16 digits 

– Hexadecimal, hex = 6 plus deci = 10  16

– The digits used are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

• And letters A (10), B (11), C (12), D (13), E (14), and F (15)

22

8

164

6

163

3

162

1

161

0

160

A

165

D

166

F

167



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Hex to Binary Conversion

• A hexadecimal digit can be easily represented 
as four digits of binary (with leading zeros)

• This makes conversion very simple

– 7A0F becomes 0111 1010 0000 1111

– 1100 0010 0110 1001 becomes C269
23

Hex Binary Hex Binary Hex Binary Hex Binary

0 0000 4 0100 8 1000 C 1100

1 0001 5 0101 9 1001 D 1101

2 0010 6 0110 A 1010 E 1110

3 0011 7 0111 B 1011 F 1111



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Hex to Decimal Conversion

• Possible to convert between decimal and hex

– But it requires calculating out multiples of 16

• Simpler to make a “side trip” to binary as 
an in-between step when converting

– 240 becomes 1111 0000 becomes F0

• F0 is equal to (15 * 161) + (0 * 160) = 240 + 0 = 240

– 7D becomes 0111 1101 becomes 125

• 7D is equal to (7 * 161) + (13 * 160) = 112 + 13 = 125

24



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Number System Notation

• Because number systems share a subset of the 
same digits, it may be confusing which is which

– For example, what is the value of 10?

• In decimal it’s 10, in binary it’s 2, and in hex it’s 16

• To prevent this, numbers may often be prefixed 
with 0b, 0d, or 0x (binary, decimal, hex):

– 0b1100 is binary, and has a value of 12

– 0x15 is hexadecimal, and has a value of 21

25



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted26

ASCII Values



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

ASCII Values

• ASCII is how text is represented in computers

– Just like binary is how numbers are represented

• In ASCII, every character has a unique,  
individual numerical code

– Lowercase and uppercase characters are separate

– Codes go from 0 to 127

• Why 127?

27



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted28



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted29

“control” 
characters

symbols & 
numbers

uppercase 
letters

lowercase 
letters



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Comparing Strings

• The values of the ASCII characters are used 
when comparing strings together

– Which can lead to some “weird” results
>>> "cat" < "dog"

True

>>> "cat" < "Dog"

False

>>> "DOG" < "dog"

True

30

<?



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

More on Comparing Strings

• Gets even more complex when you start 
adding in numbers and symbols
>>> "2" < "one"

True

>>> "good?" < "good!"

False

>>> "UK" < "U.K."

False

31



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Rules for Comparisons

• To avoid (some) of these issues:

• Always use .lower() for comparing strings

• Pay attention to symbols

– e.g., spaces, hyphens, punctuation, etc.

– Either remove them, or keep 
them in mind as part of the order

32



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

ASCII Characters to ASCII Values

• We can convert between ASCII characters and 
their values using ord() and chr()

• The ord() function takes in a single
character, and returns its ASCII value

• The chr() function takes in an integer, 
and returns its ASCII character

33



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Using chr() and ord()

>>> chr(65)

'A'

>>> chr(65+32)

'a'

>>> ord('?')

63

>>> ord("d")

100

>>> ord("e")

101

34



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted35

Project 3



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Project 3 Tips

• Hopefully you have started by now!

– Work on it a little everyday

• You have been given some solved puzzles
– Which means you don’t need a working solve() to 

test the other parts of your project
• Just load in the solution from the file

• Solve the puzzle once, and store the solved puzzle to 
use it later in your code

– Don’t resolve it every time you need it

• Make your own puzzles to test!
36



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Project 3 and Deep Copy

• You will need to make a deep copy of the 
2D list used to hold your Sudoku board

– Simply using new = old[:] will not work

• We recommend making a function to do this

– Test that your function works before using it

• Do NOT use the built-in deepcopy() 

function, or you will lose major points!!!

37



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Do Not Cheat on Project 3

• Yes, this project has solutions on the internet

– Yes, we have copies of all of them

– Yes, we will go looking for new ones after it’s due

• Yes, you could pay someone else to do it

– Yes, we know of the sites where you can get this done

– Yes, we will spot “elegant” code that you didn’t write

• Yes, there are libraries to deep copy in python

– Yes, you will get points off for using them

– You should not be importing anything for this project

38



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Questions?

39



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Announcements

• Project 3

– Design is due Tuesday, December 4th

– Project is due Tuesday, December 11th

• Final exam is when? 

– Friday, December 14th from 6 to 8 PM

– Locations will be posted on the course website

– Common final

40


